Benefit

V2V module capable of routing vehicles around crash-related congestion may reduce waiting time in heavy traffic conditions by approximately 80 percent in urban areas and approximately 42 percent on freeways.

Development of an on-board vehicular ad-hoc network (VANET) based decision-making module that receives crash information from other vehicles.


11/11/2017


Summary Information

Providing drivers with relevant information about the environment surrounding their vehicle can assist them in making driving safer and easier. This information can be useful to the driver, but there is also the possibility of overwhelming the driver. Some mechanisms already exist to help the driver act in these situations. However, vehicles can also send messages in emergency situations, such as when a crash occurs, to warn other vehicles. In addition to increasing safety, this information can be helpful in decreasing traffic congestion near a crash location. This paper describes an on-board vehicular ad-hoc network (VANET) based decision-making module that receives crash information from other vehicles, informs the driver about it, and suggests an alternative route to avoid crash-related congestion.

Methodology

The on-board VANET decision-making module was implemented and tested with vehicles in network simulation (Veins), which uses OMNet++ (a wireless network simulation tool), linked to SUMO (road network simulation software). Testing was conducted on an approximately 4 km by 4 km road network of Erlangen, Germany and Highway 401 in Ontario, Canada. Different simulations also considered different rates of module adoption, ranging from 10 to 100 percent.

The decision-making system uses a crash model to predict the duration of a crash based on factors including location, number of lanes of the facility, number of lanes blocked, and the type of vehicles involved. Given this information, the module proposes an alternative route for vehicles approaching the crash scene to avoid crash-related congestion.

The module uses an event-based decision-making approach for vehicle rerouting and triggers only when crash messages are received to avoid redundant messaging. The system also works between any equipped vehicles and does not require a central management control mechanism.

Findings

In urban environments, both travel and waiting times are reduced with increasing adoption rates. On highways, the system could yield less waiting time in lieu of a slightly increased travel time. The following tables summarize the approximate differences in waiting times at different levels of adoption. During heavy traffic periods, waiting time was reduced by approximately 80 percent in urban areas and 42 percent on freeways with complete adoption of the module.

Approximate Waiting Time in an Urban Environment (mins)
Penetration Rate
0%
50%
100%
Normal
25.00
13.33
8.33
Heavy
46.67
15.00
8.33

Approximate Waiting Time in a Freeway Environment (mins)
Penetration Rate
0%
50%
100%
Normal
63.33
63.33
55.00
Heavy
86.67
60.00
50.00

Benefit Comments

No comments posted to date

Comment on this Benefit

To comment on this summary, fill in the information below and click on submit. An asterisk (*) indicates a required field. Your name and email address, if provided, will not be posted, but are to contact you, if needed to clarify your comments.



Source

A predictive accident-duration based decision-making module for rerouting in environments with V2V communication

Author: Zardosht, B., et al.

Published By: Journal of Traffic and Transportation Engineering

Source Date: 11/11/2017

URL: https://www.sciencedirect.com/science/article/pii/S209575641630280X

Rating

Average User Rating

0 ( ratings)

Rate this Benefit

(click stars to rate)


Goal Areas

Mobility

Typical Deployment Locations

Metropolitan Areas

Keywords

V2V, congestion, mobility, connected vehicles, vehicle notifications

Benefit ID: 2017-01209